

Our chips drive your business

www.lionix-international.com

Developments in Microwave photonics

Integrated Microwave Photonics based on hybrid combination of Si₃N₄-based-TriPleX and InP PICs

Chris Roeloffzen Chief Scientific Officer c.g.h.roeloffzen@lionix-int.com

> April 29th, 2021 Enschede, NL (online)

The author would like to acknowledge the collaboration with partner Viasat. This work is funded under ESA contract reference No. 40000121956/17/NL/CLP

Our Mission

 LioniX International is a leading global provider of customized microsystem solutions, in particular integrated photonics-based, in scalable production volumes

Why

 Applying disruptive technologies to solve major societal challenges

Integrated Photonics is one of the key enablers

Scalable Production Volumes

The Gallery, LioniX Int office and lab

The Gallery, Cleanroom, PIC production

High Tech Factory, PHIX assembling & packaging Fab

Magic Micro and KANC Cleanroom, PIC production

Magic Micro / KANC Seoul, South Korea

LioniX International Enschede, The Netherlands

URSI/KIVI 2021 29 April

Our chips drive your bus

TriPleXTM: Some Geometries...

- Core Si₃N₄ and Cladding SiO₂
- High optical powers (watts)
 - Low optical attenuation
 - 0.1 dB/cm high confinement
 - 0.001 dB/cm for low confinement
- Adjustable polarization properties
- Broad band (405nm-2350nm)
- Small footprint (R_{bend} < 80 μm)
- Spot-size converters
 - $_{\circ}~$ Low coupling loss to SMF (<0.5 dB)
 - $_{\circ}~$ Low chip-to-chip coupling loss (< 1 dB)
- Silicon and glass compatible

C. Taddei et al.," Highselectivity on-chip optical bandpass filter with sub-100-MHz flat-top and under-2 shape factor," IEEE PTL, 2019

C. Roeloffzen et al., "Low-Loss Si3N4 TriPleX Optical Waveguides: Technology and Applications Overview," IEEE JSTQE, 2018

- Mode profiles from 1 μm 10 μm
- Modefield conversion
- Pitch conversion by mask layout

0

• Low loss coupling to almost any external component, including SM fiber, InP and Si (SOI)

Microwave Photonic Link (MPL)

$$G_{PM_SSBFC} = \frac{P_{RF_out}(t)}{P_{RF_in}(t)} = \left(\frac{\pi R_{pd} P_l R}{2LV_{\pi}}\right)^2 = \left(\frac{\pi I_{pd_DC} R}{2V_{\pi}}\right)^2$$

$$I_{pd_DC}(t) = R_{pd} \frac{P_l}{L}$$

 P_l = Laser power (100 mW)

 V_{π} = half-wave voltage of the phase modulator (2 V)

 L^{-} = loss of the optical link (10 dB)

$$R_{pd}$$
 = Responsivity of the photodiode (0.8 A/W)

$$\vec{R}$$
 = matching resistance (50 Ω)

 $I_{pd DC}$ = Average photo current (8 mA)

For given values: G = -10 dB

- Thermal noise: $S_{th} = kTB$ (= -174 dBm + 10 log B @ 290k)
- Shot noise \rightarrow proportional to optical power (P_{opt}) : $S_{shot} = 2qI_{av}BR_L$
- Relative intensity noise (RIN) \rightarrow proportional to $(P_{opt})^2$: $S_{RIN} = 10^{\frac{RIN}{10}} I_{av}^2 BR_L$

 $\begin{array}{l} \mathsf{B} = \text{noise bandwidth} \\ \mathsf{k} = \text{Boltzmann constant (1.38\cdot10\text{-}23)} \\ \mathsf{T} = \text{temperature} \\ \mathsf{q} = \text{electron charge} \\ \mathsf{r}_{\mathsf{PD}} = \text{photodetector responsivity (A/W)} \\ \mathsf{I}_{\mathsf{av}} = \text{average photocurrent} \\ \mathsf{P}_{\mathsf{av}} = \text{average received optical power} \\ \mathsf{R}_{\mathsf{L}} = \text{load resistance (50 ohm)} \end{array}$

• $P_{av} = \frac{I_{av}}{r_{PD}}$

Noise modeled as current sources

$$S_{\text{noise}} = S_{\text{th}} + \frac{1}{4} \left(S_{\text{shot}} + S_{\text{RIN}} \right)$$
$$NF = 10 \log_{10} \left(\frac{S_{\text{noise}}}{G_{\text{link}} k_{\text{B}} TB} \right)$$

NF = $S_{\text{noise}} (dBm/Hz) - G_{\text{link}} (dB) + 174 dBm/Hz$

- High Noise Figure
- $I_{DC} \uparrow \rightarrow NF \downarrow$ until RIN limitation
- Minimum NF depends on RIN

- PM-SSBFC
- Laser power = 100 mW
- Detected optical power = 10 dBm
- Photodiode current 8 mA (matched load)

0

- RIN = -170 dB / Hz
- $V_{\pi} = 2 V$
- $P_{in_1dB} = 6 dBm$
- Gain = -10 dB ($P_{out} \otimes P_{in} = 0 \text{ dBm}$)
- OIP3 = 5 dBm
- IIP3 = 15 dBm
- $P_n = -164 \text{ dBm/Hz}$
- NF = 20 dB
- SFDR3 = 112 dB·Hz^{2/3}

Spurious-Free Dynamic Range

Multiple Indium Phosphide Chips

• Gain

- High power laser (> 50 mW)
- High power gain (> 100 mW)
- Small linewidth (< 10 kHz)
- Low RIN (-170 dBc / Hz)

Modulator

- Phase modulator
- High speed (> 40 GHz)
- $_{\circ}$ Sensitive (V_{π} < 3 V)

• Detectors

- High speed (> 40 GHz)
- Responsivity (> 0.6 A/W)
- Very low RF crosstalk required (< -70 dB)

Our chips drive your business

TriPleX, Silicon Nitride chips

- Tunable mirror for laser
- Rectangular filter for SSBFC
- High contrast, low loss optical processing
- Spot size converters for low loss interfacing

- High integration density +
- Efficient, low-power tunability
- Drives Co\$t Down

Hybrid Photonic Integrated Circuits

TriPleX (Si₃N₄)

- ✓ Ultra low loss (<0.1 dB/cm)
- Applicable in almost all interesting wavelength regions
- Reliable actuators (heaters, strain-based: PZT)
- But is not electro-optic, so lacks direct light generation, high speed modulation and detection

• Hybrid integration TriPleX with InP yielding:

- Very high quality, widely tuneable lasers !
- ✓ High speed modulation (E/O conversion)
- High speed photodetection (O/E conversion)
- Hybrid integration with other materials (AlGaAs, Si, etc.) was shown
- Intrinsically stable, vibration insensitive

D. Marpaung et al., " Integrated microwave photonics," LPR, 2013

MPL: Laser

Laser Assembly

Laser Working Principle

Typical Specifications

- Output power > 17 dBm (50 mW)
 Maximum power 20 dBm (100 mW)
- Linewidth <1 kHz</p>
- Wavelength tuning over c-band
 80-100 nm tuning range available
- Millisecond switching speed
 0.5 ms wavelength-to-wavelength switching
- SMSR > 40 dB
- RIN < -170 dBc/Hz
- Mode-hop free tuning range 0.2 nm

- Use two InP gain sections sharing a cavity to increase power
 - But maintaining single gain properties
- Output coupling controlled by tunable coupler (TC)
- Output coherently combined
- Highest output power achieved at 80% output coupling

0

Dual Gain Laser

- Output power: >100 mW (20 dBm); 117 mW on chip
- Laser was in single mode
- Side-mode-suppression ratio
 > 50 dB
- Gain saturation begins above 300 mA
- Improved thermal conductivity will increase the output power even more

0

Output Power 100 mW!

J. Epping et al., "High power integrated laser for microwave photonics," OFC, 2020

Low Relative Intensity Noise

- Low relative intensity noise (RIN) is crucial microwave photonic links
- RIN results in signal noise
- Low RIN achieved
 - Measurement limited

Low Frequency Noise

- White noise floor (NF) gives intrinsic linewidth:
 - ∘ Linewidth ≈ $\pi^*(NF)^2$ ≈ 320 Hz
- Noise at higher frequencies are measurement artifacts.
- Propagation losses: 0.08 dB/cm

Large Tuning Range

- Total tuning range is 119 nm!!!
- 100 nm tuning range within -1dB power drop •
- Tunable output coupler increases tuning range by shifting the gain spectrum

URSI/KIVI 2021

MPL: Phase Modulator

InP Modulator (E/O conversion)

Detector Responsivity / Slope

- ✓ High speed: > 40 GHz
- ✓ Responsivity > 0.8 A/W
- Internal Matching and biasing network

MPL: Signal Processing

URSI/KIVI 2021

Smart antenna for Satcom

True Time Delay via Optical Ring Resonator

Optical Ring Resonator

- Single ORR provides tunable delay, but it is band limited
- Trade-off between maximum delay and delay bandwidth
- Solution→ cascade more than one ORRs

0

- More ORRs cascaded \rightarrow more bandwidth but more ripple
- Trade-off between bandwidth, the number of ORR and the delay ripple

Next step: to arrange the combiners and the ORRs to make a beamformer

1xN Optical Beamforming Network

iMWP Hybrid InP-TriPleX Assembly

TriPleX- Filter for SSBFC Processing

- Flat filter response
- Passband loss < 0.2 dB</p>
- > 20 dB stopband rejection
- Carrier in the passband
- USB in the passband
- LSB in the stopband

RF Link Gain

Reduced link gain is a cause by modulator saturation and detector saturation

Amplitude Uniformity at 29 GHz

URSI/KIVI 2021 29 April

Tunable delay: 0 - 2 ns (= 60 cm)

Variation < 20 ps in 800 MHz

Tunable Delays

iMWP a Disruption in RF Technology !!

- Vision: Towards iMWP (10-300 GHz, Phase Shifting, True Time Delay, Multi-beam, Combining, Splitting, Filtering, RF-in, RF-out)
- RF-Photonic integration is imperative to yield a reliable beamformer
 - TriPleX[™] Si₃N₄/SiO₂ waveguide technology enables low loss, compact, stable, mass producible MWP signal processors
 - InP enables integration of detectors, light sources, narrow-band lasers and high-speed modulators

Next step: High optical power modulators with in-line optical amplification (with SOA)

015

P014

PD13

P012

PD11

PD10

208

177

PDe

13-01900113

JU.

P2

caunnin

Elisastinanan

Lion i X

LIONIZE

CA

.

P4

- ANNO TRA

0

CLEEKEELEELEELEELEELEELEE

Summermenter

Caumanananan

